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A Semianalytical Method for Predicting Primary and Secondary Current
Density Distributions: Linear and Nonlinear Boundary Conditions
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A semianalytical solution technique is presented for solving Laplace’s equation to obtain primary and secondary potential and cur-
rent density distributions in electrochemical cells. The potential distribution inside a rectangle with the electrodes facing each other
between two insulators is presented to illustrate the method. It is shown that the method yields analytic equations for the potential
and the potential gradient along the lines. The unique attribute of the technique developed is that the solution once obtained is valid
for nonlinear boundary conditions also. The procedure is applied to some realistic problems encountered in electrochemical engi-
neering to illustrate the utility of the technique developed.
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Potential distributions and their associated current density distrib-
utions (primary and secondary) are typically obtained by solving
Laplace’s equation.1-3 The methods used to solve Laplace’s equation
include analytic and numerical methods. Analytic methods (e.g., con-
formal mapping4) provide the maximum insight into the problem and
usually yield closed-form potential and current density distributions.
Unfortunately, analytic techniques are system specific and are often
difficult to obtain. Numerical techniques are very general but usually
give a numerical value for the potential at a particular location. We
present here a semianalytical method (or analytic method of lines),
which is for a two-spatial-coordinate problem analytic in y and nume-
rical in x; thereby the technique is more general than a particular ana-
lytic solution technique and gives better insight than numerical tech-
niques for a certain class of problems (Laplace’s equation, which has
constant coefficients in at least one of the independent variables).

It is important to note that the method presented here for solving
Laplace’s equation in two spatial coordinates with nonlinear boundary
conditions does not require iterations for interior node points as is usu-
ally the case.5 The reason for this is that our method does not require
interior node points, but instead, only has node points in the bound-
aries. The nonlinearities of the boundary conditions are removed by
solving for the constants that appear in the solution of Laplace’s equa-
tion as explained in the following discussion.

The technique is an extension of the method presented by De Vidts
and White,6 who presented the semianalytical method for solving the
one-dimensional, unsteady-state diffusion equation. The semianalyti-
cal method presented by De Vidts and White consists of using the
method of lines7 to solve the diffusion equation with finite differences
used in the spatial direction. (This method was mentioned by Smith
et al.,8 but they did not present any results.) The resulting system of
linear ordinary differential equations is then solved analytically using
the matrix-exponential method.9 This technique is extended here to
solve Laplace’s equation with two spatial coordinates. The second de-
rivative of the potential in the x direction is cast into finite differences
accurate to order h2 (h 5 Dx), and the second derivative in the other
direction is replaced by two first-order-derivative equations. The
resulting system of ordinary differential equations is solved analyti-
cally using the matrix-exponential approach. The method requires de-
termining constants of integration in a manner described previously
by Subramanian et al.10 The method is illustrated by first solving La-
place’s equation for a rectangle in which a cathode faces an anode be-
tween two insulators. The method employed for this simple case is
then extended to other current-distribution problems.
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Semianalytical Method
Consider the rectangle ABCD shown in Fig. 1 of dimensionless

length 1 (AB 5 CD 5 1) and dimensionless height b (AC 5 BD 5
b). The dimensionless governing equation for the dimensionless
potential inside the rectangle is given by Laplace’s equation

[1]

with the boundary conditions (at the insulators)

[2]

where b is the height of the rectangle and

f 5 fa 5 0  at  y 5 0  for  0 # x # 1 (reversible anode) [3]

f 5 fc 5 10  at  y 5 b  for  0 # x # 1 (reversible cathode) [4]

where fa and fc are the anode and cathode potentials. Note that
anode is assigned a potential less than that of the cathode. The first
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Figure 1. Dimensionless potential distribution inside a rectangle, node spac-
ing in a semianalytical method.
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step in the semianalytical technique for this problem is to specify a
grid as shown in Fig. 1, where two (N 5 2) equally spaced interior
node points (E and G) have been placed on the x axis and two (F and
H) on the y 5 b line. The step size in the x direction is 

[5]

which for this case (N 5 2) gives h 5 1/3. As shown in Fig. 1, there
are four node points on the x axis, and the rectangle is divided by
four lines (AC, EF, GH, and BD). The potentials of these four lines
(AC, EF, GH, and BD) depend on y and are represented as fi(y), i 5
0, 1, ..., N 1 1. The boundary conditions (Eq. 2) are written in finite-
difference form (accurate to the order h2)

[6]

and

[7]

The next step is to cast in finite-difference form the second deriva-
tive of f with respect to x in Laplace’s equation and to retain the sec-
ond derivative in y for f1 and f2

[8]

and

[9]

By using Eq. 6 and 7, Eq. 8 and 9 become

[10]

and

[11]

The next step is to change the second-order equations, Eq. 10 and 11,
into a system of first-order equations. To do this, let

[12]

The first-order system of equations that results is

[13]

[14]

[15]

[16]
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Thus for N 5 2, we have 4 (i.e., 2N) dependent variables (Y1, Y2, Y3,
and Y4). Note that these dependent variables consist of the potential
and its derivatives in y along the lines EF and GH. Equations 13-16
can be written in matrix form

[17]

where

[18]

The coefficient matrix is given by

[19]

Equation 17 can be solved in two steps as presented earlier by Sub-
ramanian et al.10 The solution for the vector differential Eq. 17 can
be written as9

Y 5 exp(Ay)Y0 [20]

where

[21]

We call Eq. 20 the semianalytical solution because we discretized in
x and integrated analytically in y. The exponential matrix in Eq. 20
can be calculated using Maple V®. For N 5 2 node points, the expo-
nential matrix as calculated from Maple is

Note that in Eq. 22 sh and ch are used for hyperbolic sines and
cosines, respectively, for brevity. It should be noted that a closed-
form solution is obtained (Eq. 20) without using the boundary con-
dition in y (Eq. 3 and 4) and hence, the solution obtained is valid for
any boundary condition at y 5 0 and y 51.

For solving the particular boundary-value problem (BVP) for the
boundary conditions given by Eq. 3 and 4, the first step is using the
boundary values for f1 and f2 at y 5 0 with the derivative of f1 and
f2 (df1/dy and df2/dy) at y 5 0 treated as constants c1 and c2, re-
spectively. The second step is to apply the boundary condition for f1
and f2 at y 5 b to solve for the constants c1 and c2, which are then
substituted back into the analytic solution (Eq. 20). The boundary
conditions on f1 and f2 at y 5 0 are

f1 5 f2 5 0 at y 5 0 [23]

i.e.

Y1 5 Y3 5 0 at y 5 0 [24]

Let the derivatives of f in y at y 5 0 be

[25]d
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and

[26]

Hence, the initial condition vector (Y0) becomes

[27]

Substituting these values into Eq. 20 yields

[28]

Thus, a general solution is obtained with c1 and c2 as constants. This
solution (Eq. 28) evaluated at y 5 1 is

[29]

The values of the constants can be obtained by using the boundary
condition (Eq. 4) at y 5 1 (i.e., f1 5 f2 5 fb)

[30]

Comparison of Eq. 29 and 30 show that

2.8c1 2 1.8c2 5 fb [31]

and

21.8c1 1 2.8c2 5 fb [32]

Solving Eq. 31 and 32 we get

c1 5 c2 5 fb 5 10 [33]

Substituting these constants (c1 and c2) into Eq. 28 yields the com-
plete solution

[34]

The expected linear potential profile is obtained. Note that a solution
is obtained simultaneously for both the potential and its derivative in
y, which is an added benefit of this method. Once f1(y) and f2(y) are
obtained after obtaining the boundary conditions, f0(y) and f3(y) can
be found from Eq. 6 and 7, respectively. This example also shows that
our technique is numerical in x and analytic in y.
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Boundary Conditions
The solution obtained (Eq. 28) is also valid for linear and nonlin-

ear boundary conditions at the cathode. For example, if the boundary
condition at the cathode is given by linear kinetics

[35]

where Jc is a dimensionless cathodic polarization parameter. In this
case, Eq. 31 and 32 become

8.45c1 2 7.45c2 5 Jc(10 2 2.8c1 1 1.8c2) [36]

and

27.45c1 1 8.45c2 5 Jc(10 1 1.8c1 2 2.8c2) [37]

Solving Eq. 36 and 37 for c1 and c2 yields

[38]

These constants (c1 and c2 from Eq. 38) can be substituted into
Eq. 28 to obtain the potential profiles for linear kinetics at the cath-
ode. The solution obtained is also valid for nonlinear boundary con-
ditions. For example, if the cathode kinetics are given by the nonlin-
ear Butler-Volmer equation

[39]

Equations 31 and 32 become

8.45c1 2 7.45c2 5 Jc[exp(21.4c1 1 0.9c2 1 5)

2 exp(25 1 1.4c1 2 0.9c2)] [40]

and

27.45c1 1 8.45c2 5 Jc [exp(0.9c1 2 1.4c2 1 5)

2 exp(25 2 0.9c1 1 1.4c2)] [41]

These nonlinear algebraic equations (Eq. 40 and 41) can be solved
easily using Maple. For example, if Jc 5 1, using Maple’s fsolve
command, these equations yield

c1 5 c2 5 6.27  for  Jc 5 1 [42]

If Jc 5 10, these two equations can be solved by using Maple to give 

c1 5 c2 5 9.12  for  Jc 5 10 [43]

These values for c1 and c2 can be substituted into Eq. 28 to get the
potential profiles for this case where the boundary condition at the
cathode is nonlinear. As the polarization parameter Jc is increased,
the primary current distribution (Eq. 33) is approached, as expected.
For a given boundary condition at x 5 0 and x 5 1, the problem is
solved generally and is valid for any boundary condition on the cath-
odes and anodes placed at y 5 0 and y 5 1. Note that our solution
for a nonlinear boundary condition was obtained easily by merely
solving for two (N 5 2) nonlinear algebraic equations (Eq. 40 and
41). Similar procedure can be used for linear kinetics and Butler-
Volmer kinetics expressions at the anode.

Hull Cell

Consider a Hull cell as shown in Fig. 2. The boundary conditions
at the insulators and the anode (y 5 0) are the same, while the
boundary condition at the cathode is given by 

f 5 10  at  y 5 1 1 0.5x (on the cathode) [44]

Even for this BVP, the solution obtained (Eq. 28) is still valid. Sub-
stituting the numerical value for the position of the cathode we get

∂
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[45]

Using the boundary condition 44 with 45, the constants are solved as
before as

c1 5 8.21  and  c2 5 8.09 [46]

Substituting these constants, potential profiles are obtained. The cur-
rent distribution at the anode (for unit conductivity k) is plotted in
Fig. 3 using N 5 10 node points. The time taken for finding the
exponential matrix for this problem was 10 s using a Pentium 333
MHz processor. The time taken for solving the ten linear equations
for the constants was around 2 s. Hence, the total time taken was
around 13 s using Maple to produce Fig. 3.

Suppose the boundary condition at the anode of the Hull cell is
given by the linear kinetics expression

[47]

Now the Laplace equation has to be solved with the insulator bound-
ary conditions at x 5 0 and x 5 1 and Eq. 44 and 47. Even now, the
BVP need not be solved once again. The exponential matrix given
by Eq. 22 is still valid. The initial condition at y 5 0 is taken as
(based on Eq. 47)

[48]

where p1 and p2 are the unknown potentials at the two node points.
Substituting this initial-value vector into Eq. 20, an analytic solution
similar to Eq. 28 is obtained. When the solution is evaluated at the
cathode
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Figure 2. Semianalytical method for a Hull cell.
[49]

This equation can be solved with the boundary condition (for a par-
ticular value of Ja) to solve the constants p1 and p2. Using the expo-
nential matrix developed for Fig. 3, by merely recalculating the con-
stants, the linear-kinetics secondary current distribution at the anode
is obtained and plotted in Fig. 4 (for unit conductivity) for various
values of the polarization parameter Ja. Note that as Ja increases, pri-
mary current density distribution is approached (Fig. 3).

Let the boundary condition at the anode be given by the nonlin-
ear Butler-Volmer boundary condition

[50]

Again, there is no need to solve the BVP once again; using the expo-
nential matrix obtained for Fig. 3, by merely recalculating the con-
stants the secondary nonlinear current distribution in the anode is
obtained and plotted in Fig. 5. Maple is used to solve the nonlinear
algebraic equations arising out of the nonlinear boundary condition.
The Newton-Raphson technique can be used to solve the system of
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Figure 3. Primary current density distribution in a Hull cell.
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nonlinear equations more efficiently (not reported here, but can be
obtained upon request from the authors). Time taken for solving for
a particular value of Ja 5 1 is around 4 s. Similarly, the profiles for
different values of parameters are obtained. As seen in Fig. 5, for
higher values of the polarization parameter Ja, the primary current
distribution (Fig. 3) is approached, as expected. Note that by using
the same exponential matrix for Fig. 3 (time taken 5 20 s), by solv-
ing for constants only (each curve in Fig. 5 takes only 4 s to solve
for the constants), the secondary nonlinear current distribution on
the anode is obtained. The utility of the technique developed is dem-
onstrated further in later sections. The semianalytical technique de-
veloped can be generalized for any number of node points, as illus-
trated in Ref. 11.

Current Density Distribution in a Curvilinear Hull Cell
Consider current flow between planar electrodes placed on two

radii of an annular section,12 forming a cell with concentric cylin-
drical walls (Fig. 6). The curved walls are insulators. The anode is
reversible, and the cathodic reaction kinetics expression is linear.
The governing equation in dimensionless form is

[51]

with the boundary conditions
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and
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Figure 4. Linear kinetics–secondary current density distribution in a Hull
cell, effect of polarization parameter Ja.
This BVP is chosen to illustrate the validity of our technique for a
different coordinate system other than Cartesian. This BVP can be
solved using our semianalytical technique by discretizing Eq. 51 in
r and integrating analytically in u. Once the solution c(r, u) is ob-
tained, the current density distribution along the cathode can be ob-
tained as

Figure 5. Nonlinear secondary current density distribution in a Hull cell,
semianalytical method for Butler-Volmer boundary conditions.

Figure 6. Semianalytical method for a curvilinear Hull cell.
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[55]

The normalized current density along the cathode using N 5 6 is
shown in Fig. 7 with P as a parameter, which agrees with the figure
presented by Lee and Chapman.12 The time taken with Maple to solve
this BVP is around 20 s (for the entire program). All the plots given
in Ref. 12 for different values of the polarization parameter P were
completely reproduced with our solution technique by merely solving
the BVP only once with P as a parameter in the boundary condition.
Again it is worth repeating that our method yields values for c and i
which are functions of the parameter P. This is particularly useful for
parameter estimation (or optimization) studies because the computa-
tion time required to determine P given the current density would be
significantly less compared to a numerical technique, which would
require a completely new solution for each value of P. Finally, the
solution obtained can be modified easily for a change in dimension
(radius, height, etc.).

Thin-Layer Galvanic Cells

Consider the thin-layer galvanic cell shown in Fig. 8,13 the
Laplace equation can be written in dimensionless form as13

[56]

where e 5 W/L is the aspect ratio, with the insulator boundary con-
ditions at x 5 0, 1 and y 5 1. The boundary condition at y 5 0 is
given by
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Figure 7. Secondary current distribution on a curvilinear Hull cell for differ-
ent values of the polarization parameter P.
and

[58]

where a is the ratio of anode length to the total length of anode and
cathode. This example is chosen to illustrate the validity of our tech-
nique for a domain containing more than one region (of equal
height). Now N interior node points are chosen in the anode and M
interior node points are chosen in the cathode. The step sizes in the
anode and cathode domain are given by

[59]

Potentials at x 5 0 and x 51 are eliminated using the boundary con-
ditions as before. Now the potential at the surface (x 5 a) is
expressed in terms of the potentials at the other node points using the
continuity of flux as

or [60]

Only potentials at the N interior node points in the anode and M in
the cathode are solved. The procedure is the same as before. Results
for N 5 M 5 4 for a 5 0.2 and e 5 1023 are plotted in Fig. 9 and
agree well with the results reported in the literature. Secondary cur-
rent density distributions for different values of the polarization
parameters are plotted in Fig. 9. Again, once the matrix exponential
is found for the governing equation (Eq. 56), the secondary current
distribution for nonlinear Butler-Volmer kinetics can be found. The
total Maple time taken was around 80 s. Also a similar BVP arising
in a cylindrical thin-layer galvanic cell13 can be solved easily using
our technique.

Infinite Domains

The technique developed in the previous sections can be extended
to semi-infinite and infinite domains. Consider two plane electrodes
of length L, each separated by a distance H apart, placed opposite in
the walls of an insulating flow channel.1 An analytic solution was
presented by Newman1 for this geometry. Near the edge of the elec-
trode the primary current density is infinite. This problem was solved
numerically by Rousar et al.14 They changed the infinite domain into
a finite domain by using a variable transformation
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When this transformation is substituted into the Laplace equation
(Eq. 1), only derivatives with respect to x change. Therefore, the
potentials can be integrated using the exponential matrix in y direc-
tion using our technique. They also exploited the symmetry condi-
tions and used a successive overrelaxation procedure to solve numer-
ically the transformed problem. They compared their numerical re-
sults with the exact analytic solution in Fig. 6.2.8 of their book. They
used 1587 node points to obtain their results. We solved the same
BVP using our technique with 25 node points in the x axis (20 on the
anode and only 5 on the insulator, see the previous section for choice
of node points). Our results (Fig. 10) are in excellent agreement with
the analytic solution given in Ref. 1. We were able to obtain the cur-
rent density distribution (normalized to the numerical average) as a
function of the aspect ratio 2H/L. The flexibility of our method
regarding the dimensions helped us to obtain all the plots in Fig. 10
by solving the BVP just once and merely recalculating the constants
(as explained previously). The time taken by Maple for running this
BVP was around 5 min.

Disk Electrode

The primary current density distribution on a rotating-disk elec-
trode (RDE) can be found using our technique. The potential is gov-
erned by Laplace’s equation (in cylindrical coordinates). This BVP
was elegantly solved by Newman4 using elliptic coordinates. How-
ever, for our technique, the transformation to elliptic coordinates is
not useful, as illustrated in the next section. The boundary conditions
are given by

[62]

f

f

f

5 5 #

5 5
f

5 5

` `

1 0 1

0 0 1 0 0

0

at

at and at

as or

z r

z
z r

r
r

r z

,

,
∂
∂

∂
∂

>

r r r

Figure 9. Linear secondary current density distribution in a thin-layer gal-
vanic cell, effect of polarization parameter Jc.
The same transformation used above (Eq. 61) is used on the r coor-
dinate in this example. The transformation changes the derivatives in
r only. Hence, the resulting equation is solved by integrating analyt-
ically in y after discretizing in transformed r, and the primary current
density distribution on the disk electrode is plotted in Fig. 11 using
N 5 25 node points (25 on the disk and only 5 on the insulator). For
conserving time, z is integrated to a numerical value (say 10) and
increased only if necessary instead of finding the limit z tending to
infinity. Time taken for generating the profile is around 100 s. It
should be noted that Laplace’s equation is discretized in r and not in
z. If Laplace’s equation is discretized in z, then the coefficient matrix
A becomes r dependent and the solution is not given by an exponen-
tial matrix but by the matrizant.10

Other Examples

The technique presented here can also be used to predict prima-
ry and secondary current density distributions on a sinusoidal pro-
file.15 The potential is governed by the Laplace equation

[63]

where A is the ratio of amplitude to the length of the wave subject to
the boundary conditions

F 5 0 at Y 5 2cos(2pX)  (at the sinusoidal surface)

[64]

This BVP (Eq. 63 and 64) is discretized in X and integrated analyti-
cally in Y. It should be noted that for this BVP, the initial condition
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Figure 10. Primary current distribution on plane parallel electrodes, effect of
aspect ratio (2H/L).
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vector Y0 is completely unknown. Therefore, both the potential and
its derivative are taken to be constants at Y 5 0. That is, we solve for
both pi and ci at the node points at Y 5 0. There are 2N constants to
be determined. N equations are given by the boundary condition at
Y r `. The other N equations are given by substituting the numeri-
cal value for the position of the sinusoidal surface (as in a Hull cell)
and using the boundary condition at the sinusoidal electrode. Results
obtained for A5 0.1, N 5 20 node points are in excellent agreement
with the reference. The Y component of the current density, relative
to the applied current at the counter electrode, is plotted in Fig. 12.
The total time taken by Maple for this BVP is around 1 min.

We used our method to solve several other examples
1. Plane parallel electrodes separated by an infinite distance.16

2. Infinitely long plane parallel electrodes separated by a narrow
gap.16

3. Potential profiles in a two-dimensional rectangular electrolyz-
er (section 6.3.3 of Ref. 14).

4. Cylindrically symmetric potential-distribution problem.17

5. Potential distribution in a flow-by electrode for the mass-trans-
fer-controlled current.18,19

6. Interpretation of measured polarization resistance at a solid
electrode/electrolyte interface.20

7. Estimation of front velocity in electrodeposition onto highly
resistive substrates.21

The details associated with these examples are available from the
authors upon request.

Limitations
A semianalytical technique is presented to solve Laplace’s equa-

tion. To integrate analytically using the exponential matrix, Laplace’s
equation should have constant coefficients in y. For example, La-
place’s equation in cylindrical coordinates can be integrated in z but
not in r. To integrate in r, the matrizant10 should be used. If both the
independent variables appear explicitly in Laplace’s equation as in
elliptic coordinates, the matrizant method must be used. It is not ad-

Figure 11. Primary current distribution on a RDE, semianalytical method for
semi-infinite domains.
 visable to go beyond N 5 20 node points. Also, Maple V is a memo-

ry intensive software compared to a numerical language like FOR-
TRAN. One should have a PC with a minimum RAM of 64 MB for
the problems discussed here. Also, only Laplace’s equation is solved
in this paper. Tertiary current distributions would require finding the
exponential matrix only once, but the math involved in the manipula-
tion is complicated and will be communicated in a later paper. 

Discussion
In this paper, we have presented a general solution technique for

solving current and potential distribution problems. The method pre-
sented here can be used easily to determine both primary and sec-
ondary current density distributions (both linear and nonlinear by
solving just once). The method developed is more general than ana-
lytic techniques (valid for nonlinear boundary conditions also) and
gives better insight than numerical techniques (solve just once for
any boundary condition on the cathode and anode) for a certain class
of problems. Laplace’s equation is a partial differential equation; we
converted it to a linear set of ordinary differential equations (ODEs),
the solution for which is general and does not depend upon the
boundary conditions and shapes in y. The method presented here is
also useful from a pedagogic point of view because it is more gen-
eral than analytic methods (e.g., using the solution of a rectangle to
predict current distributions in a Hull cell). Also, this technique
could be extended to predict tertiary current density distributions.
Also, the technique presented here could be extended to treat non-
linear problems in a manner similar to that presented earlier.10 An
alternative to finding the exponential matrix is developed by Subra-
manian and White22 and will be used for solving current and poten-
tial distributions symbolically and communicated later.

It is hoped that this paper will serve as a useful tool for anyone who
wants to solve current density distribution problems. For improving
the speed of computations, finite differences of higher order of accu-
racy are used for discretization along the x axis. We have developed a
general Maple program in which the user can specify the order of
accuracy. The user has to specify only the governing equations and
boundary conditions. Once these are specified, the program can be

Figure 12. Primary current distribution on a sinusoidal profile, semianalyti-
cal method for curved electrodes.
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executed to obtain the potential and current density profiles. Maple
programs used for obtaining the specific results in this paper and the
other examples mentioned are available on a diskette and can be ob-
tained upon request from the authors. 
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List of Symbols
A ratio of amplitude to length of a sinusoidal surface
A coefficient matrix
b height of the rectangle (dimensionless)
ci dimensionless unknown constants 
H distance between plane parallel electrodes, cm
h step size in the x direction (dimensionless)
i current density, A/cm2

iA current density at the counter electrode (Fig. 12)
iavg average current density on the cathode, A/cm2

ik current density at the kth node point on the cathode, A/cm2

i~k normalized current density at the kth node point on the cathode
(dimensionless)

Ja dimensionless anodic polarization parameter
Jc dimensionless cathodic polarization parameter
L length of plane parallel electrodes, cm
N total number of node points
pi dimensionless unknown constants
P dimensionless polarization parameter
x dimensionless x coordinate
Y dependent variable in vector form
Y2i21 potential at the node i 5 1..N
Y2i potential derivative (in y) at the node i
y dimensionless y coordinate

Greek
r dimensionless radial coordinate for curvilinear Hull cell
f potential (dimensionless)
c dimensionless potential inside a curvilinear Hull cell
= gradient (dimensionless)
u angular position in a curvilinear Hull cell

Subscripts and superscripts
0 initial condition, at y 5 0
i index of the node point
k index of the node point on the cathode
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